top of page
Search
vieflexreiblogpesy

Download net3.0 frame work and discover the best practices for .NET programming



Is NET Framework 3.0 supported for Windows? A lot of users are confused about this question. In this post, MiniTool explains it and provides a full guide on the NET Framework 3.0 download/install.


Microsoft .NET Framework 4.5 Download & Install for Windows 8/7 What is .NET Framework 4.5? Where to download NET Framework 4.5? If you are also trying to figure them out, this post is what you need.




download net3.0 frame work




Step 3. In the Windows Features window, see if the .NET Framework 3.5 (includes .NET 2.0 and 3.0) is enabled. If not, you can tick the checkbox and click on OK to download and install NET 3.5. After that, the NET 3.0 and 2.0 should have been installed too.


Step 1. Click here to open the Microsoft .NET Framework 3.0 official website, and then select the language from the drop-down menu and click on Download. Then select a location to save the download package.


Why I install .net3.5 manual failed ? I download the .netframework 3.5 and copy to windows 8. I run the .net3.5 installation package. it also popup notice. But I want to install .net3.5 not require the network. any body gives some suggest?


Microsoft .NET Framework is an open-source software development framework created by Microsoft. The first version was released in 2002. It includes both the Command Language Runtime and Framework Class Library.


The .NET Framework (pronounced as "dot net") is a proprietary software framework developed by Microsoft that runs primarily on Microsoft Windows. It was the predominant implementation of the Common Language Infrastructure (CLI) until being superseded by the cross-platform .NET project. It includes a large class library called Framework Class Library (FCL) and provides language interoperability (each language can use code written in other languages) across several programming languages. Programs written for .NET Framework execute in a software environment (in contrast to a hardware environment) named the Common Language Runtime (CLR). The CLR is an application virtual machine that provides services such as security, memory management, and exception handling. As such, computer code written using .NET Framework is called "managed code". FCL and CLR together constitute the .NET Framework.


FCL provides the user interface, data access, database connectivity, cryptography, web application development, numeric algorithms, and network communications. Programmers produce software by combining their source code with .NET Framework and other libraries. The framework is intended to be used by most new applications created for the Windows platform. Microsoft also produces an integrated development environment for .NET software called Visual Studio.


In April 2019, Microsoft released .NET Framework 4.8, the last version of the framework as a proprietary offering. Only monthly security and reliability bug fixes to that version have been released since then. No further changes to that version are planned.[3]


While Microsoft and their partners hold patents for CLI and C#, ECMA and ISO require that all patents essential to implementation be made available under "reasonable and non-discriminatory terms". The firms agreed to meet these terms, and to make the patents available royalty-free. However, this did not apply to the part of the .NET Framework not covered by ECMA-ISO standards, which included Windows Forms, ADO.NET, and ASP.NET. Patents that Microsoft holds in these areas may have deterred non-Microsoft implementations of the full framework.[8]


Common Language Infrastructure (CLI) provides a language-neutral platform for application development and execution. By implementing the core aspects of .NET Framework within the scope of CLI, these functions will not be tied to one language but will be available across the many languages supported by the framework.


Because computer systems commonly require interaction between newer and older applications, .NET Framework provides means to access functions implemented in newer and older programs that execute outside .NET environment. Access to Component Object Model (COM) components is provided in System. Runtime. InteropServices and System. Enterprise Services namespaces of the framework. Access to other functions is via Platform Invocation Services (P/Invoke). Access to .NET functions from native applications is via the reverse P/Invoke function.


While Microsoft has never implemented the full framework on any system except Microsoft Windows, it has engineered the framework to be cross-platform,[23] and implementations are available for other operating systems (see Silverlight and Alternative implementations). Microsoft submitted the specifications for CLI (which includes the core class libraries, CTS, and CIL),[24][25][26] C#,[27] and C++/CLI[28] to both Ecma International (ECMA) and International Organization for Standardization (ISO), making them available as official standards. This makes it possible for third parties to create compatible implementations of the framework and its languages on other platforms.


.NET Framework has its own security mechanism with two general features: Code Access Security (CAS), and validation and verification. CAS is based on evidence that is associated with a specific assembly. Typically the evidence is the source of the assembly (whether it is installed on the local machine or has been downloaded from the Internet). CAS uses evidence to determine the permissions granted to the code. Other codes can demand that calling code be granted a specified permission. The demand causes CLR to perform a call stack walk: every assembly of each method in the call stack is checked for the required permission; if any assembly is not granted the permission a security exception is thrown.


.NET Framework includes a garbage collector (GC) which runs periodically, on a separate thread from the application's thread, that enumerates all the unusable objects and reclaims the memory allocated to them. It is a non-deterministic, compacting, mark-and-sweep garbage collector. GC runs only when a set amount of memory has been used or there is enough pressure for memory on the system. Since it is not guaranteed when the conditions to reclaim memory are reached, GC runs are non-deterministic. Each .NET application has a set of roots, which are pointers to objects on the managed heap (managed objects). These include references to static objects, objects defined as local variables or method parameters currently in scope, and objects referred to by CPU registers.[31] When GC runs, it pauses the application and then, for each object referred to in the root, it recursively enumerates all the objects reachable from the root objects and marks them as reachable. It uses CLI metadata and reflection to discover the objects encapsulated by an object, and then recursively walk them. It then enumerates all the objects on the heap (which were initially allocated contiguously) using reflection. All objects not marked as reachable are garbage.[31] This is the mark phase.[32] Since the memory held by garbage is of no consequence, it is considered free space. However, this leaves chunks of free space between objects which were initially contiguous. The objects are then compacted together to make free space on the managed heap contiguous again.[31][32] Any reference to an object invalidated by moving the object is updated by GC to reflect the new location.[32] The application is resumed after garbage collection ends. The latest version of .NET framework uses concurrent garbage collection along with user code, making pauses unnoticeable, because it is done in the background.[33]


The garbage collector used by .NET Framework is also generational.[34] Objects are assigned a generation. Newly created objects are tagged Generation 0. Objects that survive one garbage collection are tagged Generation 1. Generation 1 objects that survive another collection are Generation 2. The framework uses up to Generation 2 objects.[34] Higher generation objects are garbage collected less often than lower generation objects. This raises the efficiency of garbage collection, as older objects tend to have longer lifetimes than newer objects.[34] By ignoring older objects in most collection runs, fewer checks and compaction operations are needed in total.[34]


.NET Framework was the predominant implementation of .NET technologies, until the release of .NET. Other implementations for parts of the framework exist. Although the runtime engine is described by an ECMA-ISO specification, other implementations of it may be encumbered by patent issues; ISO standards may include the disclaimer, "Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights."[42] It is harder to develop alternatives to FCL, which is not described by an open standard and may be subject to copyright restrictions. Also, parts of FCL have Windows-specific functions and behavior, so implementation on non-Windows platforms can be problematic.


Windows 10 comes with .NET framework 4.5 pre-installed, but many apps developed in Vista and Windows 7 era require the .NET framework v3.5 installed along with 4.5. These apps will not run unless you will install the required version. When you try to run any such app, Windows 10 will prompt you to download and install .NET framework 3.5 from the Internet. However, this will take a lot of time. You can save your time and install .NET Framework 3.5 from the Windows 10 installation media. This method is much faster and does not even require an Internet connection. Here is how to install it.


You are done! This will install .NET framework 3.5 in Windows 10. To save your time, I have prepared a simple batch file which will save your time and will find the inserted installation media automatically. It looks like this: 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


bottom of page